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1 Introduction: Solitons in field theory.

The classical finite-energy solutions of field theory are generally called solitons. Most of the
simple field theories which we are familiar have the property that all of their non-singular
solutions of finite total energy are dissipative. This is the case of Maxwell equation, the Klein-
Gordon equation, etc [3].

However, there are some field theories that posses non-dissipative solutions of finite en-
ergy. Among these are some spontaneously broken gauge theories. The most simple case are
time-independent solutions, lumps of energy holding themselves together by their own self-
interaction.

In order to explain this, we will take as an example a λφ4 theory in 1 + 1 dimension. The
Lagrangian can be written as

L =
∫

[
1

2
(∂0φ)2 − 1

2
(∂xφ)2 − V (φ)]dx, (1)

where

V (φ) =
λ

2
(φ2 − a2)2 (2)

The vacuum expectation value of the field is

φ = ±a = ±
√
µ2

λ
,

and the ground state energy is E = 0. Here, we are studying small oscillations around the
vacuum expectation value of the field (φ = v + χ), and µ is the mass of the meson χ.

There exists a static, finite energy solution to the equation of motion: the solitons. This
solution can be obtained through the variational principle in the following way:

−δL = δ
∫

[
1

2
(∂xφ)2 + V (φ)]dx (3)

This is mathematically equivalent to the problem of a particle with unit mass in a potential
−V (x). The equation of motion comes from minimizing the action:

δLdt = δ
∫

[
1

2
(
dx

dt
)2 + V (x)]dt = 0 (4)

The motion of the particle in the potential −V (x) is analogous to a time independent field
solution. However, to have a finite-energy solution, the field has to go to the zero of V (φ) as
x→ ±∞, so the following integral is finite:
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H =
∫

[
1

2
(∂0φ)2 +

1

2
(∂xφ)2 + V (φ)]dx (5)

In the particle - equivalent problem, this means that the particle goes to the zeros of the
potential as t→ ±∞ [5]. So, the solution takes the vacuum values x = ±a when t→ ±∞. It
can move from one vacuum to another one at different points. We will find now the form of
the finite-energy solution starting with the case of zero-energy:

1

2
(
dx

dt
)2 − V (x) = 0, (6)

or, for if we are studying fields:

1

2
(
dφ

dx
)2 − V (φ) = 0, (7)

Integrating this result, we have:

x = ±
∫ φ

φ0

dφ(2V (φ))−
1
2 , (8)

where −a < φ0 < a.
The solutions are invariant under translations. If φ = f(x) is a solution, then φ = f(x+ a)

is also a solution, where a is a constant.
For the case of λφ4 theory, whith a potential given by equation (2), the finite-energy solutions

given by equation (8) are:

φ+(x) = atanh(µx) (9)

φ−(x) = −atanh(µx) (10)

Solutions (9) and (10) are know as kink and anti-kink, respectively. Their energy is finite,
and it is expressed as

E =
4µ3

3λ
(11)

It is interesting to note that if we consider the Euclidean version of the field theory, indentify the
time coordinate as the y coordinate, and think of φ(x, y) as the magnetization, this configuration
describes a domain wall in a two-dimensional magnetic system (see Figure 1).

From (9), we can see that φ+ = ±a as x → ±∞. Even though these solutions are not the
absolute minimum of the potential, they are stable.

This finite-energy solutions resemble a particle in the following way:
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Figure 1: Configuration in 1 + 1 dimensions.

• The energy is concentrated in a finite region of space. This is due to the fact that φ±
deviate from the ground state φ = ±a only in a small region.

• It can be made to move with any velocity less than unity. The equation is Lorentz-
covariant, so we can make a Lorentz boost to obtain a solution with non-zero velocity.

2 More dimensions: Derrick theorem.

Derrick theorem.

If φ is a set of scalar field in one time dimension and D space dimensions, with a potential
U(x) ≥ 0, and U(x) = 0 for the ground state of the theory, then, for D ≥ 2, the only non-
singular time-independent solutions of finite energy are the ground state [2].

This is sufficiently discouriging to make us investigate theories of more than 2 spatial di-
mensions.

Proof
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Define

V1 =
1

2

∫
dDx(∇φ)2 (12)

and

V2 =
1

2

∫
dDxU(φ) (13)

V1 and V2 are both non-negative and are simultaneously equal to zero only for the ground
states. Let φ(x) be a time-independent solution. Considering the one-parameter family of field
configurations defined by

φ(x;λ) ≡ φ(λx), (14)

the energy is given by

V (λ) = λ(2−D)V1 + λ−DV2 (15)

This must be stationary at λ = 1 (by Hamilton s principle). Then,

(2−D)V1 +DV2 = 0 (16)

For D > 2, this implies that both V1 and V2 vanish, and the proof is complete. For D = 2,
this only implies that V2 vanishes. V2 is also stationary since zero is its minimum value. So,
applying Hamiltons principle to V1 alone, it trivially follows that V1 also vanishes.

3 The mass of the kink. A non perturbative result.

The mass of the kink can be calculated by minimizing:

M =
∫
dx[

1

2
(
dφ

dx
)2 +

λ

4
(φ2 − v2)2] (17)

Scaling φ(x) → vf(y), and y = µx, we obtain:

M =
µ2

λ
µ

∫
dy[

1

2
(
df

dy
)2 +

1

4
(f 2 − 1)2] (18)

The mass of the kink results to be M = 2
√

2
3

µ3

λ
+µ(1

6

√
3
2
− 3

π
√

2
), calculated by Dashen et al.

in 1974.
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We can make the following observations about this expression: (i) The first term in the
mass of the quantum kink particle is the energy of the classical static kink solution. The next
term represents the correction due to quantum fluctuations.

(ii) The first term - the energy of the classical kink - is singular as λ → 0. So, this result
is non perturbative. It could not have been obtained from a perturbation expansion starting
from the vacuum.

(iii) Nevertheless, the quantum fluctuations are being treated perturbatively in powers of
λ. This result is only valid in the weak coupling approximation.

Another way of constraining the mass is known as the Bogomolnyi inequality (we will discuss
it in the following subsection).

3.1 Bogomolnyi inequality.

The energy density M (equation 17) is the sum of two squares. Using the property a2 + b2 ≥
2 |a.b|, we get

M ≥
∫
dx(

λ

2
)

1
2

∣∣∣∣∣dφdx(φ2 − v2)

∣∣∣∣∣ ≥
∣∣∣∣∣ 4

3
√

2
µ(
µ2

λ
)Q

∣∣∣∣∣ , (19)

where Q is defined below (equation 23)
Then, M ≥ |Q|, and we have constrained the mass of the kink [2].

4 Topological properties

The kink and anti-kink solutions in 1 + 1 dimensions have interesting topological properties.
These topological properties make the solutions stable.

In 1 + 1 dimensions, the λφ4 solutions satisfy the following properties:

φ(∞)− φ(−∞) = n(2a), (20)

where n = 0 corresponds to the ground state, n = 1 to the kink solution, and n = −1 to the
anti-kink solution. This can also be written as

∫ ∞

−∞
(∂xφ)dx = n(2a) (21)

Then, if we define a current jµ as

jµ(x) = εµν∂
νφ, (22)
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the current will be conserved: ∂µj
µ = 0 (the tensor εµν is an antisymmetric tensor), and the

conserved charge is given by

Q =
∫ ∞

−∞
j0dx =

∫ ∞

−∞
(∂xφ)dx = n(2a) (23)

Therefore, the kink number n is a conserved quantum number and, consequently, there is no
possible transition between kink or anti-kink solutions and the ground state: they are stable.
This is usually known as the topological conservation law [1].

The current jµ is known as a topological current, and its existence does not follow from
Noether s theorem but from topology. Another way of seeing this is that one would need an
infinite amount of energy in order to change the value of φ from −a to a for x from some point
to infinity, for example. Small localized packets of oscillations in the field (mesons) clearly have
Q = 0, while the kink has Q = 1. Then, the kink cannot decay into a bunch of mesons.

The different sectors (with different values of n) can be characterized by their topological
properties as follows. As we said before, as x→ ±∞, φ+ or φ− approaches the zeros of V (φ).
We will denote the set of spatial infinities of the theory (the two discrete points +∞ and −∞)
by S and the set of minima of the potential ±a by M0. The condition that the solution to the
equation of motion has finite energy implies that the asymptotic values of φ(x) are zeros of
V (φ):

limx→±∞φ(x) = φ ∈M0 (24)

This can be considered as a mapping from points in S to M0. In the ground state configu-
ration, ±∞ are mapped to a, and in the kink configuration φ+ maps +∞ to +a and −∞ to
−a. These are topologically distinct mappings (one cannot deform one into another).

5 Solitons in 3 + 1 dimensions.

In 3 + 1 dimensions, in order to have topologically stable finite-energy solutions, we must have
long-range magnetic fields. The Lagrangian density for a 3 + 1 dimensional theory with a
finite-energy solution for a scalar field can be written as

L =
1

2
(∂µφi)

2 − V (φi) (25)

We will denote again with M0 the set of minima of the potential:

M0 = φi = µi, V (µi = 0)
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If the theory has a symmetry G, the elements of M0 will be related by the symmetry group
G. As an example, φ = ±a in λφ4 theory are related by the symmetry φ = −φ. The possible
directions in which r can go to infinity are given by a unit vector defined in a sphere in three
dimensional space ( a two-sphere):

S2 = r̂, r̂2 = 1

We note that, in four dimensions, S2 is a connected set.
The condition for a finite-energy solution is that as r → ∞, φ approaches one of the zeros

of V (φ):
φ∞i (r̂) ∈M0

For the ground state configuration, φ∞i goes to the same value in all directions. If G
is a discrete symmetry group, M0 is a discrete set, and as S2 is connected, φ∞i would have
to be constant. Then, φ∞i will have the same topology as the vacuum configuration, and is
topologically trivial. To have a topologically non-trivial solution, the symmetry G has to be
continuous. This non-trivial topological solution correspond to a long-range magnetic field. To
study this, we first notice that the energy is bounded by:

H ≥
∫
d3x[

1

2
(∇φi)

2 + V (φi)], (26)

where

(∇φ)2 = (
∂φ

∂r
)2 + (r̂ ×∇φ)2 (27)

Since φ∞i is a constant, (∇φ)2 will go like r−2 as r → ∞, and therefore the integral in H will
be divergent. In conclusion, there are no topologically stable finite-energy solutions in 3 + 1
dimensions.

If we add gauge fields to the theory, we can deal with this difficulty. So, we will replace the
gradient by a covariant derivative:

Diφ = ∇iφ+ ig(Aa
i Ta)φ (28)

This way, it is possible to have Diφ decreasing as r−2 and, therefore, a convergent energy
integral for non-trivial topological solutions. In this case, the gauge field Aa

i decreases as r−1,
and the field strength as r−2, which corresponds to a long-range magnetic field.

6 Homotopy groups

Spacial infinity is topologically a unit circle S1 in a two dimensional space, and the field config-
uration where φ = ±a also forms a circle S1. So, this can be characterized as a map S1 → S1.
Since this map cannot be deformed into a map in which S1 is mapped into a point in S1, the
field configuration is topologically stable. The homotopy group Πn(M) classifies maps of Sn
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into a manifold M counting the number of topologically inequivalent maps. With this language,
we can discuss topological solitons. In the case of solitons, we can see that a kink is a physical
manifestation of Π0(S

0) = Z2. Here, the zero dimensional sphere S0 consists of two points,
(−a; a), and is topologically equivalent to the spatial infinity in one dimension [4].

7 Dynamically generated kinks

As I mentioned above, the existence of kinks and solitons follows from general considerations
of symmetry and topology, rather than from dynamics. If we have a have a 1 + 1 dimensional
theory with a discrete G symmetry, we will expect a kink (a time independent independent
configuration σ(x)), such that

σ(−∞) = −σmin (29)

and

σ(+∞) = σmin (30)

(The anti-kink has σ(−∞) = σmin and σ(+∞) = −σmin).
Studying field theories in the large N limit, the action of a fermionic theory is

S(ψ, σ) =
∫
dx[

N∑
a=1

ψa(i∂µγ
µ − σ)ψa −

N

2g2
σ2], (31)

where the scalar field σmin can be seen as the mass acquired by a fermion.
Integration over the fermionic fields leaves:

S(σ) = −
∫
dx

N

2g2
σ2 − iNtr(log((i∂µγ

µ − σ))) (32)

The factor of N is counting for the integration over N fermionic fields. To find the precise shape
of the kink , one would have to evaluate the trace in equation (32), for an arbitrary function
σ(x) , such that σ(∞) = −σ(−∞) and then, varying the functional of σ(x), it would be possible
to find the optimal shape of the kink.

We can make the calculation of the trace in the following way:

tr(log(i∂µγ
µ − σ(x))) = tr(logγ5(i∂µγ

µ − σ(x))γ5) = (33)

= tr(log((−1)(i∂µγ
µ + σ(x)))) =

1

2
tr(log((i∂µγ

µ − σ(x))(i∂µγ
µ + σ(x)))) =

=
1

2
tr(log([−∂2 + iγ1σ(x)− (σ(x))2]))
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γ1 has eigenvalues equal to ±i. Therefore, we reach the following result:

tr(log((i∂µγ
µ − σ(x)))) = tr(log([−∂2 − σ(x)− (σ(x))2])) (34)

So, the action defined in equation (32) has a term quadratic in σ(x) and a term that depends
on the combination [σ(x) + (σ(x))2].

The solution for the soliton (σmin) minimizes the action. Then, the soliton is given by the
solution of this differential equation:

σ(x) + (σ(x))2 = σ2
min (35)

This has the following result:

σ(x) = σmintanh(σminx),

and the size of the soliton can be determined as 1
σmin

= 1
mferm

8 Soliton - soliton interaction

Guided by the analogy described in section 1 between solitons and particles, we want to see
if the dynamics of a set of two or more solitons can be described by an interaction potential
which depends on their relative separation.

Since the field equations are non-linear, a superposition of single-soliton functions will not
be a solution, in general. But if the solitons are far enough, the non-linear effects will cause
a small distortion in each soliton, and the overlap will be small. In general, these solutions
will not be static because each soliton will exert some force on the others, and make them
accelerate.

As an example, we will consider a λφ4 model. Boundary conditions permit kink-antikink
configurations.

The time independent field equation is given by:

φ′′ − λφ3 +m2φ = 0 (36)

The only finite-energy solutions of this equation are the kink, the anti-kink and the trivial
solution φ(x) = ± m√

λ
. The kink and anti-kink solutions will exert force on one another and

will not remain static. But they could remain stationary by applying some external force. This
holding can be done in the following way [3].

We will consider the modified equation of motion:

φ′′ − λφ3 +m2φ = α(R)[δ(x− R

2
) + δ(x− R

2
)] (37)
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The right hand side can be viewed as two external point forces applied at x = ±R
2
.

This solution does, in fact, yield to a finite-energy solution that looks like a kink - anti kink
pair separated by a distance R. We note that this solution will have a slope discontinuity at
the points x = ±R

2
. The distortion goes to zero as R→∞. The solutions are elliptic integrals

(Rajaraman, 1977). The energy corresponding to this solution is

E(R) =
4
√

2m3

3λ
− 8
√

2
m3

λ
exp(−

√
2mR) +O(R) (38)

The first term is the sum of the masses of the free kink and anti-kink. The second term has
the form of an interaction potential energy V(R) of the kink and anti-kink pair:

V (R) − 8
√

2
m3

λ
exp(−

√
2mR)

This interaction is attractive and strong when the coupling λ
m3 is weak and it is valid only

for large R, since at small R the kink and anti-kink loose their identity.
We therefore strengthened the analogy of kink and anti-kink solutions with Newtonian

particles.
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